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NON-STEADY-STATE SHOCK WAVE FRONTS AND THEIR INTERACTION

Sebastian von Heoerner
Astronomilsches Rechen-Institut, Heidelberg

Introduction - /376%

A study group was formed at the Max-Planck-Institut fur
Physik, Gottingen, in 1953 under the direction of C.F. v.
Weizsacker, consisting of about 8 members working closely on
the problem of strong shock wave fronts. Impetus for this
was provided by the necesslity of searching for a sort of
"theory” of turbulence with supersonic velocities" applicable
to many problems in astrophysics. Due to a variety of con-
siderations, this was not attempted with the otherwise con-
ventional, direct approach of correlation statistics, but
began with the detalls; and what amount to the (rather fictive)
turbulencé elements in the case of subsonic velocity would
correspond, in the case of supersonic velocity, to (phenomenoc-
logically better-defined) shock wave fronts.

An additional impetus for concern with shock wave fronts
1s provided directly by observation. The photographs of
several emission nebulae exhibit a large number of filamentous
structures, and it 1s quite possible that some of these fila-
ments could be interpreted as laterally projected shock wave
fronts or as lines of intersection between two obliquely
intersecting fronts.

Since then, ten articles from this study group have been
published. Additional existent material includes three
unpublished dissertations, two more articles, and a series
of other discussions and results. This study group has now

¥Numbers.idn the.margin indicate pagination in the foreign text.



has . been reached within our working program. Further pursuilt
would only be feasible with renewed “lafge—scale implementa-
tion," and we hope that this idéa will be taken up again in
some other study group and continued.

Thus the goal of this article is to summarize everything
to date and to unify.it so that it can serve as a basis for
renewed study. An additional reason for such a summary 1s
that, aslide from the pursuit of our direct program, we have
attacked and worked on a large number of individual questions
in hydrodynamics which could also be useful for completely
different problems.



I. Problem and Program /377

For many problems in astrophysics, a need has existed for
several years for a theory of turbulence at supersonic velocities.
As an example, we would like to briefly outline the conditions
of motion of interstellar matter. The interstellar matter
which 1s highly concentrated in the plane of the Milky Way
consists primarily of atomic hydrogen; its density averages
about 107°% to 10723 z/em3. We distinguish between the
unionized HI regions, with temperatures of 50-100° absolute,
and the lonized HII regions, at about 10,000°. The associated
sonic velocities are thus about 1 km/sec (for HI) and 10 km/sec
(for HII). We must compare these with the flow veloc’ities.

The Interstellar matter participates in the general rotation
about the center of the Milky Way, which amounts to about

250 km/sec in the vicinity of the Sun. On this rotation is
superimposed a disordered motion (individual regions or

clouds) on the order of 5 km/sec; however, individual fast
clouds c¢an have velocities up to 100 km/sec. We can find

even higher velocities in expanding shells following supernovae,
e.g. 1000 km/sec in the Crab nebula.

We can see from this comparison that the Mach numbers M
(flow velocity / sonic velocity) characterizing the state
of motion are generally scattered over the wide range between
1 and 100. On the other hand, theoretical works to date on
furbulent motion processes include an assumption of incom-
pressibility (M << 1), so their results can only be applied
in special cases, if at all.

A purpose is thus clearly provided for seeking a theory
of turbulence at high Mach numbers; and the question now is
by what path to best approach this theory. We could first



consider proceeding much as in the incompressible case, for
example, by conducting a Fourier analysis in accordance with
Heisenberg [1], by considering a hilerarchy of elements within
one another in accordance with v. Weizsacker [2], or by
introducing correlation tensors in accordance with Chandra-
sekhar [3, 4]. The compressibillity now to be included would
have to be accounted for with suitable additicnal terms.

It is highly questionable, however, whether a formula-
tion of this nature can produce success. As soon as three-
dimensional velocity differences become greater than sonic
veloclty, shock wave fronts must necessarily bg generated
which represent something essentlally new relative to the
incompressible case, and we can qulte generally suppose that
for this reason alone, statements concerning the one case
cannot be applied to the other. We shall cover this point

in greater detall below, however.

2. Energy Dissipation

In derivations of the theory of incompressible turbulence,
it has generally been necessary to introduce a similarity
postulate, such as in the following form: "If L is the /378
diameter of the largest and Ig is that of the smallest
turbulence elements, then within the orders of magnitude
characterlized by I; << I << L, the magnitude of energy which
is dissipated (per g and per sec) from elements on the order
of 7, e.g. to elements on the order of 1/2, should not be a
funetion of 1.1 We offer the two articles by Chandrasekhar
cited above [3, 4] as an example: while the hope is expréssed
in the former article that such a similarity statement would
not have to be postulated in the future, but could be derived,
it still had to be expressly postulated in the second article.



For clarification of thils point, let us ccnsider the
derivations of formwiae in [3, 4]. Use has beén made of the
principles of continﬁity and the conservation of momentum,
but not that of the conservation of energy. And it appears
evident that we cannot obtain an unequivocal description of
rea2ity from just the former two principles. Thus the
principlie of the conservation of energy must also be employed
in some form. Its use 1n direct form would probably mean
studying the processes of energy dissipation in detaill and
bullding up the entire field of fturbulence stepwlse, start-
ing with the smallest elements. And this rather tedious
approach could only be avoided if the inftroduction of simil-

larity postulates proved to be adequate and successful.

Whereas the introducticon of a similarity postulate
possessed some quite plausible features, this 1s no longer
the case for high Mach numbenrs. Due to the ocecurrence of
shock wave fronts of all orders of magnitude, a portion of
the energy 1s converted directly into heat from each order
of magnitude, not just via the smaliler and smallest elements,
as before. It might be possible to take these circumstances
into consideration with a modified form of the postulate, but
we also wish to peint out another objection (and one which

appears more serious to us).

Let us consider the magnitude and the whereabouts of
the dissipated energy. If turbulence elements of diameter 1
have veloclity w relative to their surroundings, then almost
their entire energy 1s dissipated during time I/w, i.e.
about (1/2)w2 (erg/g). Except for factors on the order of
1, dissipation S (erg/g-sec) amounts to

3 =_W3/Z



(Since, in the case of incompressibility, S also may not be
dependent upon I, according to the similarity postulate, we
obtain the Kolmogoroff spectrum of turbulence from this:

w 21/3.) After passage through smaller and smaller elements,
this energy is finally converted into heat. A corresponding
Input of energy to the largest elements is then necessary to
maintain a steady state.

In the incompressible case, M << 1 also implies: turbulence
energy << thermal energy. This means, however, that the
increase in thermal energy caused by dissipation is relatively
small, and the resultant timewise increase in temperature can
be neglected.

This is no longer the case for M > 1. Turbulence energy
1s now greater than thermal energy, and the increase in thermal
energy during time I/w is greater than 1ts original magnitude.
Expressed in clearer terms:; if I stir the gas 1In a vessel /379
around at supersonic velocity, the temperature will have
risen in just two or three rotations, due to dissipation,
to such an extent that the sonic veloclty has now become
higher than the velocity of stirring (M < 1). Thus a steady
state with M > 1 can only be maintained if provisions are
made for extremely rapid removal of the thermal energy generated.

In practice, this removal of énergy takes place via
radiation from within the shock waves. And since the shock
wave fronts of all orders of magnitude will radiate energy,
it appears reasonable that a statistical analysis of the
state of motion could only be possible if express considera;ﬁ
tion were given to the presence and the effect of shock wave

fronts.



In order to illustrate thls statement, we finally point
out that for M > 1, the spectrum..cf turbulence (or a law
corresponding to it) must be a function of the ratio between
the energies which are radiated by shock wave fronts of
different extent. And this necessarily leads to a detailed

consideration of processes within the shock wave fronts.

Let us insert an additional remark here. The rapidity
of energy removal through radiation which is required for a
steady state with M > 1 should only be possible with complete
lonization, i.e. at front temperatures of Ty > 10,000°K. For
M >> 1 and atomic hydrogen, Tp 1ls related to front velocity V

in the case of no radiaticn, according to formulae (2) and (3),
by

Trin° K

F in km/sec.

Tp = 22,5 V? {

It follows from this that a steady state with M > 1 should
only be possible for velocities above 20 km/sec.

3. Working Program

The following program was worked out for v. Weizsacker's
study group on the basis of conslderations such as the above:

a) First; treatment of the problem of the strong, non-
steady, planar shock wave front which (as the simplest
case) moves in a qulescent region ahead of it of

constant density.

b) Study of the radiation of energy from within the
shock wave, as well as its reverse effect on the dis-
tribution of density and temperature behind the front.



¢) Concerning additional complications, primary considera-
tion of the effect of magnetlc fields.

d) The next problem concerns the various types of inter-
action between two shock wave fronts, first of type
a), as well as with the radiation of energy and
perhaps also with magnetic fields.

e) After clarification of all of these individual prob-
lems, an attempt to find a steady state whose charac-
teristics can be described completely and statistile-
ally for a field of shock wave fronts passing through
one another in unordered fashion in all directions,
at all velocities and of all sizes (with a suitable

input.of energy).

If 1t had proved possible to succeed all the way through
item e), we would thus have cbtained a theory of turbulence
at high Mach numbers. It can easily be..seen, however, that
this is a long and quite complex path to the goal being sought.

What has so far been achieved with thils approach will be
briefly summarized here: Item a) can be considered to have
been completed. From almost any initial distributions, a
"standard front" develops after a brief period; this could
also be treated analytically as a homology sclution of a
certain type. The class of homology solutions and the associ-
ated problem of transformation groups was studied in detaill, as
well as the problem of the stability of the homology solutions.

Regarding item b), an article on stationary shock wave
fronts with energy radiation has been completed but not yet
published, and the same 1s true of an article on the isothermal

limiting case for nonsteady fronts.

~



Regarding item c), the effect of magnetic fields of
arbitrary strength and direction upon statlionary fronts of

arbltrary strength has been completely'covered.

Regarding item d4), the interactions of two strong, non-
steady, parallel standard fronts have been calculated.

Along the lines of item e), a highly simplified meodel
has been treated by Monte Carloc methods 1n order to achleve a
first overview of the manner in which steady states can

eventually be established.

We shall report on the work outlined here 1n the follow-

ing sections.



II. The Nonsteady, Strong, Planar Front

The motion of a nonsteady shock wave front and the distri-

bution of wvelocity u, density p and préssure p behind the

front are described by a system of three partial differential
equations of the hyperbclic type, along with the boundary
conditions which apply at the front. Let t be time, x be
position (in the direction of the front's propagation), and

a subscript indicate the corresponding partial derivative.
Then, in Eulerian notation, neglecting viscosity and thermal

conductivity, our basic equations read

Conservation of mass ot ung |- ou, =0
Conservation of momertum. u,+—uu,+——— =0 (1)
Conservation -of energy - p;+—upxivdpuzm-0

and, at the front, we have the following boundary conditions /381
for a strong shock (M >> 1) (e.g. see [51):

# -1
4 =='"::‘IG = 40

(2)

x—1 1
p="g ow = g out

The number of boundary condifions is 1 less than the number
of basic equations because the front is reached by exactly one
characteristic of the region behind it, and thus only two degrees
of freedom remain. The position of the front in each case must

be calculated by the integration of an additional equation

V__‘;_ :%u ;' (3)

where pg 1s density ahead of the front, V 1s the velocity of
the front itself, and ¢ is the ratio of specific heats. With

10



a view toward our astrophysical application, we have used the
value for & monatomic gas, x = 5/3.  We colleet Egs. (2) and
(3) under the heading "front conditions."

The problems assoclated with the above equations are,
first of all, of a technical mathematlcal nature: the equations
are not linear, and the position of the boundary depends upon )
the sclution itself. Secondly, no specific solution has yet
been indicated by the equations used so far; we still require
initlal distributions of u, p and p, or general conditions
which restrict the type of solution. Thirdly, we are not
interested in some special solution, but would like to obtain
as general Information as possible in accordance with our

working program.

The intent of this section is tc study the extent to
which the description of shock wave fronts can be simplified
mathematically in a physically reasonable manner in order to
ultimately formulate general statements. One:such possibility
is the elimination of certain types of solutions by reducing
the system of partial differential equations (1) to a system
of ordinary differential equations by means of a separation
theorem (compatible with the front conditions). This approach
ylelds so-called homology solutions. For them to be physically
meaningful, the values of u, p and p must remain finite for
all finite x; and if it 1s to be of interest to us in terms
of our problem, a solution must be stable (neighboring solu-
tions must osculate with lncreasing time). If both require-
ments are satisfied, then 1t can be hoped that this type of
solution is approached asymptotically from varioﬁs indtial
conditlons and thus represents a useful description of

shock wave fronts occurring in nature.

11



A second possibility consists of the direct numerical

treatment of paftial system (1) by allowing the widest variety

of initialrdistributions to follow thelr course and observing
whether they become more similar to one another with time and
approach a common form of solution. Both possibilities were

tried at Gottingen, and thelr joint result was given the name

"standard solution."”
To avoid having to again interrupt.the presentation of
the homology solutions, we wish to begin with a deseription of

the second possibility.

A. BSystem of Partial Differential Equations with Initial Con-

ditions

1. Computatioh Method

The development of various initial distributions with
time was studled 1n an article by Hain and v. Hoerner [6].
It was first necessary to determine here whether to use
Eulerian or Lagranglan coordinates for this purpcse. For
adiabatic gas motion without external forces, a Lagrangian
representation would actually be the more natural and more
appropriate mode of description, since entropy then remains
constant in the time direction, and since direct use is made
here of the concept of particle trajectories and the fact that
they cannot overlap. It was found, however, that the formula-
tion of boundary conditions then becomes more complex and that
their numerical treatment requires involved and time-consuming
operations. Thils is because the Lagrangian coordinates are
totally unsuitable for describing a front through which matter
passes (in a quantity determined only by the solution itself).

Thus after several attempts, we gave preference to the Eulerian

representation.

12
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The next question is whether to calculate with a uniform
time interval, or aldng characteristics. Since we also need
the positions of the characteristics in the former case, for
the stability of calculations, and since the only computer
available at that time, G 1, is better exploited with the
characteristics method, the latter was given preference. The
distributions of u, p,and p sought at fixed times were then
obtained by linear interpolation within the network of char-

acteristics.

It was more convenient for computation here to replace
the dependent variables p and p with the variables a and s
(sonic veloecity and normalized entropy),

]

LAt = s:lu(ﬁ);
. o

2

System (1) then reads

"r+u“z+'}’ﬂ'“a’z+}’1'a2%=O l
/ rz.toi—ua,,,%wwl—»au.,:() (4)
Yo
p 3l+u3z=0 I
where :
2 : 1 9
V=g ad o n=— oo (5)
j
The two boundary conditions now read /383
a=yy-u gnd $=1p,+ 2w (6)
where k=D Vs and o — 2L [ 1y
‘ Y= T T g Ya=1In [?'J.’f' (r“-}——l)]' : (7)

while the third front condition (3) remains unchanged.

13



System (4) has three real characteristics, whose direc-
tions are found to be .

'0+;.u+a, C-=u—a =u | (8)

The remalnder of the approach can only be outlined briefly here.
The hodograph equations were used in differential form along.

the characteristics; each Ct characteristic was calculated

all the way from the initial distribution to the front. Then
the next starting point on the initial distribution in each

case was selected in such a manner that the changes in the

front values did not exceed a maximum quantity. Second-order
calculations were made; the method is described in detail in [6].
Lo

2. Testing for Homology

We investigated whether, with increasing time, the solu-
tions so calculated approach an approximately constant form.
As we shall show in Section B2, this amounts to the question
of whether the solutions approach one of von Weizsicker's
homology solutions [5]. Making use of von Weizsicker's
homolgy theorem, we can also formally assign a value k of the
homolegy parameter to every point (x,t) in any arbitrary (non-
homologous) solution, and the existence of homology is indi-
cated by k{(x,t) = const. The system of equations for those
quantities from which k(x,t) is caleculated is overdetermined
here; with an adjustment we then obtain both k(x,t) and a
measure of error o(x,t). For homology we must require not
only k(x,t) = const but also o(x,t) = 0.

3. Results

The first question 1is, for what type of initial distribu-
tion can we expect a development of constant conditions, since
almost any arbitrary timewise front behavior can ultimately

14



be produced by a suitably selected initial distribution.
Although it cannot be stated precisely in mathematical terms,
it appears evident that constant conditions can only develop
from arbitrary initial conditions (if at all) if the region
to the rear is also largely determined by the front, alone.
Thus no appreciable résupply of momentum may occur from the
rear. For this reasocon, all examples calculated were selected
in such a manner that the resupply of momentum to the rear is
somehow limited, e.g. by a steep dropoff in velocity, density
or temperature. Within thils one condition, however, the

examples have been selected with the greatest possible varlety.

In practice, thils means that we allow a single fast cloud of
finite extension to the rear, behind which no other cloud
is following, to enter a quiescent gas of constant density.

Overall, nine examples were calculated, three of which
are shown in Fig. 1. 1In all nine cases, the timewise behavior
of k along the front, k(X), initially exhibits pronounced
fluctuatlions but, after a relatively short time, gradually
assumes a constant value, which was found to be the same
for all examples and averaged k = 0.39 £+ 0.01. The next test
was to also calculate k(x,t) for the region behind the front.
The result was the same: after initlally pronounced fluctua—
tions, the constant (in terms of space and time) average value
of

k = 0.390 £+ 0.006 (9)

was eventually assumed,

For the third test, Fig. 2 shows the curves of o(x,t)
averaged over all calculated examples, indleating deviation
from homology. The times used here 'were defermined from the

front benavior of k (right.side of Fig. 1) as follows:

15
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Fig. 1. Left: three arbitrarily

selected 1nitial distributions

of density, velocity and tempera-
ture behind the front. Right:
the resultant time curves of the
{(formally defined) homology para-

meter k along the front. From [6].
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Fig. 2. Deviation o(x,t) from
homoleogy, averaged over all nine
calculated examples, at the time
points defined by (10). The x-
scale 1is always normalized sco
that ux/u assumes the same value
at the front. From [6].

followed graphically for all examples.

_ tl = time of greatest

deflectlon of k(X)

t. = time at which k(X)} (10)

= (0,39 reached

‘ t3 = latest possible

point in time,
"45t2.

We see from Fig. 2
that the feasibility of
representation by means )
of a homology solution
decreases with increasing
distance from the front
for each fixed point 1n
time and increases with
increasing time for each
fixed front distance. /385
The homology solution
which is approached is
thus gradually assumed
with time from the direc-
tion of the front. (The
residual value o = 1%
corresponds to computa-

tional precision).

In addition, the
osculation of the region
behind 1t to the approached
homolegy solution was

E.g., Fig. 3 shows

temperature curves at various times for the first of the

distributions in Fig. 1.

We see how the homology solution de-

velops . from the direction of the front.

16



W, The Standard Solution

18y -
2 Qur results are thus

as follows: The same homoclo-
~gous solution (k ~ 0.39) is

always apprcached in all nine

78,

14

cases caleculated. This solu-
tion, which was always
approached in the absence of

a resupply of momentum, was
giveh the name "standard

[ | i L L -
\£ 4 3 .2 1 0 J solution." While it had
) previously been assumed that

Fig. 3. Temperature of the all plane homology solutions
region behind front {((initial '
distribution in Fig. 1a) had singularities for finite
approaches the standard solu- x. the standard solution
tion with increasing time. ? e
Front temperature is always exhibited a completely regular,
normalized to 1; x-scale as smooth shape even very far to

in Flg. 2. From [6].
the rear. Inspired by this,

Hafele [13] found the singular solutlon to the homolgy equations
described in the next section, which remains regular as the
one homology solutlien for all finite x.

One of the examples calculated was followed to long times, Ziﬁé
in large time intervals (computational outlay increases with
the square of time!), and was then compared with Hafele's
solution. Figure 4 shows the results: within its computational
precision, the distribution which is assumed is identical with
Hifele's solution.

In explanation of Figs. 3 and 4, it should also be men-
tioned that all quantities have been normalized in terms of
their front wvalues. The x-scale has been normalized in such
a manner that the derivative of normalized velocity with

17
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Fig. 4., The distribution assumed
(from an arbitrary starting dis-
tribution) at two time intervals:
+++4+4+ £t = 8.9; ..... t = 16.8.
Standard solution according to
Hafele plotted as heavy curve

for comparison. From [6].

and

respect to position is

always given the same value

at the frént. This nor-

malization was introduced

s¢c that wvariocus distribu-~

tions could be checked for

gsimilarity.

In the search for
simple a mathematical

description of the standard

as

solution as possible, we

were initially struck by

the almost linear curve

of veloeity. Moreover
the following are good

approximations for the

>

normalized (as described

above) quantities:

The question of the "linear solutions" raised here will be

treated separately in Section C.

B. The Homology Solutions

1. The "Block Wave"

(11)

(12)

In order to achieve a first, rough overview of the manner

in which the velocity of a strong shock wave front left to

itself decays, von Weizsacker [5] represented the front and

the region behind it schematically with a "block" of spatlally

18
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constant density p and gas veloecity u, assumed to be of finite
thickness d perpendicular to the front. The region ahead of

it is assuméd to be quiescent and of constant density. Due

to front conditions (2) and (3), p = const and V/u = ccnst
while, due to the accumulation of matter (of the region ahead),

u and V decrease with time and d increases.

For the accumulation of matter, m = p(V - u) = const-u,
where m is the mass of the block per cm2 front area, and the
correspondingly defined momentum of the block is J = mu. The
requirement of the conservation of momentum is thus

S = mau + mu = const . w4 wdju = O
or ! .
% = — const - 3 (13)
and, integrated, with V - const.u,
Vi) const (lbc)

= A

If we impose the regquirement of conservation of energy, /387

——

mu2 = const, however, then instead of the above, we obtain

v = (15)

const
(& — &y

The difference in the two exponents shows the shortcomings
of this model; the form of dependence upon time, whiech is common
to both results, suggests, however, that an expression of the

type

const

V(‘)im)—g (16)

could also be sucecessful for an exact trestment of the problem,
We will see below that this supposition proves correct (with

19



k = 0.389) and was thus able to indicate the proper approach
even for this rough- medel.

2. General Derivatlon of the Homology Theorem

Von:Weizsacker proceeds directly from the statement sug-
gested by [16], which he extended in a corresponding manner
to the region behind the front, making use of the spherically
symmetrical homology theorems of Taylor [7] and Guderley [8,
9]. We wish to present a derivation of the homology theorem
here, however, which starts only with a very widely applicable
physical requirement and which 1s kept as general as possible,
so that 1ts result can no longer appear in any manner to be

an arbitrary mathematical statement.

We are actually interested in the question of whether a
type of solution exists which, starting from various initial
distributlions, is always (or under certain conditions)
approached asymptotlcally with time. If this is the case,
then the solution should remain similar tc itself from there
on. Let this be our physical requirement, and the next
question is how we are to formulate this similarity require-
ment mathematically. We wish to keep the theorem just as
general as possible, and we believe the least that we must
require of a solution which "remains similar to itself" to
be the following:

The functional relatlionship between the quantities
u, ¢ and p, normalized with their front values, (17)
shall be the same at all times.

If we call X the time-dependent position of the front,
then this means

_f{etx Ol {l’%ﬂ} l‘ (18)
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where

U=ulX), R=¢(X), P= ;p(X}.!

(If not otherwiée expressly noted, we wish to adopt the con-
vention that large letters shall always be functions of time
only.) This requirement is identical with the following
formulation:

The values of u, p and p at one time should result from ! /388
the values at another time via an arbitrary (not necessarily

linear!) time-dependent scale transformation of u, p; p and x.

Or, in formilae,

ol t) = R(t)-r(§)
w(r, 8y = Uty p(&) (19)
pla, t) = P{t) - p(&)

withy L =&z, B

.&(X) = const = ¢,

where £ is an arbitrary function of position and time which
always assumes the same value ¢ at the front.

If we now also take the three front conditions (2) and (3)
into consideration, our homology requirement finally reads

e(z, 1) = r(§)
u(x, t) = U-p(§)

1 (20)
Pl 1) = o UR-y(f).

If we agree to assume density Py = 1/4 ahead of the front,
then

r(e) = ¢(c) = plc) =1 (21)
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We now apply our statement (20) to differential equation
(1) and obtain the following .(the prime symbol indicates deri-
vation with respect to £):

Ei ’ 1] o .
.ﬁz.r—}amp Fgr' =20

., U 1y ,
Eﬁ;q)-f——(j—z?;@—l-??-{—q@:() (22)
& U o, 5 ,
! a;;'/’ +57§:~W+§%U¢+¢'V’ =0
Since r, ¢ and ¢ are supposed to be functions of ¢ only,

the requirement of separability means that

U ,
— s =7 ) and Uitz = h() (23)

are also functions of ¢ only, which we label g' and h. Iir,
for the purpose of abbreviation, we define

W= 1V,
the first requirement yields
W o= ¢'(8) - £,.

Integrating over x, with B as an arbitrary time funetion,vwe /389
obtain

Wz + B =g(8), }

and if we call vy the inverse function of g, then
§ =y + B |

Since £ only occurs as the argument of arbltrary functions,
however, it is no limitation on generality to state the follow-
ing ldentity for the arbitrary function Y

f=Wed B (24)
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Without our having required it at . the start, we thus find
that the scale transformation must be linear in Xx.

When (24) 1is uséd, the second separability requirement

reads _ § . -
EEED —wey = w4+ B,

and since the left side 1s linear in x, the right side nust
likewise be:
h(Ww -+ B) —aWx +aB+b; ab = const. )

By a comparison of coefficlents with the left side, after
double integration over t (0 # a # 1), we obtain

W = const - (£ — {)VA—~a), W = const. W% B = const. Ve -+ const. f

Qur result thus finally assumes the form

xr— @ : Uo

Ez(t——to)lu—T and U=‘(T__.;)T; 1:1:!.:#.&,4 (25)'

where we have set k = 1/(1 - a); Xqs tD’ UO and k are constants.

We note that k 1s the only important constant here (= homo-
logy parameter); for the excluded values of k, we also add
the solutions which result instead of it and obtain

Type | U (=, 1)
a. General -k z. (-a-B
i 1 (26)
b. (£=1) ¢ z+1nt
¢ (k= o0) ekt xekt,

Formula (25) 1s precisely von Weizsicker's homology theorem,
which we have derived here from physical requirement (17), kept
quite general.
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It is interesting that we can obtain the same result from
a completely different and purely mathematical.starting point.
Thus von Hagenow [10], proceeding from Lie's theory [11] and
an article by Lax [1l2], studied the invariance of the basic
equations (1) relative to infinitesimal transformations of /390
the dependent and independent variables. Through the rela-
tionship between invariance properties and separability, von
Hagenow obtains the totality of all separation theorems which
follow from the invariance properties of (1). If we pick out
only those theorems which are compatible with front conditions
(2) and (3), we get precisely our three forms (26), while the
remaining five cannot be employed to represent shock wave
fronts with a constant region azhead. Thus for all five of
the remalining théorems, foraexample, temperature is a pure
function of & and would therefore be constant with time at
the front.

An additional result of von Hagenow's work is the follow-
ing general statement: A separation theorem is always com-
patible with the front conditions if the region behind and
the region ahead of the front can be separated on the basis
of the same theorem, It should also be noted that we obtain
homolegy solutions only in the limiting case of the strong
front; at least, derivations and theorems have not so far
been possible for the case of general front strength.

3. The Homology Equations

The reduction of system (1) of partial differential equa-
tions to a system of ordinary differential equations 1is
accomplished by also substituting (26a) into (22), as von
Weizsdcker does [5]. Overall, we have thus substituted
statement (20);. and the resultant special form (26a) into
basic equations (1). We obtain the system
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[~ (L —&)&)-r +rg" =10

!

1
[p— (U~ Belg + L —kp=0

(27)

5
[p — A —E)L]-9" + 5 vg' — 2kp = 0.

This notation differs formally from that in [5] somewhat,
but is identical to it. Comparison with theisimilar formula-
tions by Guderley [9] and by Courant-Friedriehs [14] is
carried out in [5]. System (27) was integrated numerically
for various k by von Welzsdcker, three different types of

solution being obtalned.

Hifele continues the analytical treatment of (27) in [13],
starting with a method developed by Guderley and applied there
to the spherically symmetrical case [8]. The decisive aspect
of this method is the reduction of system (27) to one first-
order differential equation and two subsequent gquadratures.

1

We introduce the new dependent variables™ (n = 1 - k)
vi&) = 29 ana ;quz(i_.iﬁﬁq‘ (28)
we g ni&? ()]
while only 1lnr- is used 1in place of the third dependent /391

variable. We replace the derivatives with respect to £ with
those with respect to lng . If we substitute this into (277,
a system of equations for the functions v, p and lnr . results
in which the coefficients of the derivatives are functions of
v and u, only, not of r and ¢. The first of equatlons (27),
for example, becomes

1Here, ﬁ is related to sonic velocity a by

% {\7\
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(vw1)%;§§~+—d-%~+y=0, (29)
while the two other equations assume similar forms, but become
so complex that we do not wish to present them here. This
property of the system, that its coefflcients are funetions

of u and v only, has the consequence that a differential
equation in p and v can be obtained. It is given 1in Hifele
such that spherically symmetrical and cylindrically symmetrical
cases can also be covered; we merely wish to formulate 1t here

for the planar case in which we are interested,

W (30)
vt 1ﬁwv+2ﬁh~mw—4%w—%)- S
where : ' 1
n=1—%k gnd a'=1—— .
n
With a sultable choice of density in the region ahead
of the front, front conditions now take the form
p=2fx + 1) =3, (31a)
p=Fqu —1) j(x + 1) = ]/gji (31b)

In.r = 0.

This means that all solutions which represent the region
behind a strong front pass through a fixed point A in the u,v
diagram whose coordlnates are a function only of the ratio

of specific heats k.

The varilables ﬁ and v introduced in (28) are indeed
sultable for a certaln region behind the front, but not in
the vicinity of £ = 0. For this reason projective coordinates
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are introduced, as in Guderley, with
fo= B[ty v = Xofty, x}, = const — x,/3 + x,/3, ! : (32)
from which a quite complex differeqtial equation of the form
defdry = g(m,, 23, 25) | | (33)

is obtained, which can be referred to in [13]. The variables
Xys X, are in turn undefined within a certain region lying
very far behind the front, however, so we must again use

variables u,v here.

Thus either system (27) or the alternate use:..(depending ~ /393
upon region) of Eqs. (30) and (33) can be selected for ., ...
integration. If we only wish the solution for certain values
of ¥ and k, then the integration of (27) is to be preferred.

On the other hand, representation on the basis of (30) and (33)
is particularly suitable not only for obtaining an overview

of the totality of possible solutions but also for ascertain-
ing whether a physically regular solution is available.

4., Types of Solution

a) Front Behavior. In order to provide ourselves with a

qualitative overview of the various types of solutions, we
first consider the behavlior of the front itself. According to
expressions (20) and front condition (3), front velocity V{(t)
has the same form as U(t) in (25). We immediately see from
(25) that the front is accelerated for k < 0, moves at constant'
velocity for k = 0, and is decelerated for k > 0. We thereby
obtain the first line of our overview in Table 1, which has
been compiled from [5, 13, 17].
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THE VARIOUS TYPES OF HOMOLOGY SOLUTIONS.

The second line gives us the path covered by the front;

we obtain it simply by solution of (25).

Since we are inter-

ested only in decaying fronts, further discussion will be

restricted to k > 0.

b)

The Directional Field of Equation (30).

Further

differentiation among various types is only possible if we
consider the region behind the front, particularly its rear

end and the singularities which occur there.

For this pur-

pose Hafele [13] gives the directional field of differential
equation (30), both in the u,vvcoordinates and in projective

coordinates (32).
study by Hafele. regarding all details.
Fig. 5 from the article [13] to provide a rough overview.
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The reader is referred to the extensive

We have taken our

TABLE 1.
Parameter Valuel <0 | k=0 jo<k<ly | b=y | fk<h | k=l | h<k=<l | k=1 | k>
. de- | |
The front is peler-"| steady decelerated
: ated )
!I fromi =, - @y - —
Eront figves .
- £6 + + ™ + oo + = £y
RegioR héhihd front ( ‘
on separatiix'T.. ol ! 11 / - /
¥ via 0 Py Reversal line
Convergencer o
! . toward - £y Py P,
= ,
l .§ ggaFfﬁ S Impenetrable wall Vacuum Reversalsrline
' £ bouridary ©
0 :
2 WVelocity >0 >0 ' =0 ' <0 — @ <0 =0 | >0
& s . [
i . . .
é) Funct_:iqn;,, oo T o =0, 0=10 0, f'd finite 3
values — const p = const, p=0 but
T= o I'=c Op Ppr Tg = o0
'[Note: ./. = not applicable.]
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_ We see five singu-
l5fities in Fig. 5. 1In
~general, both the posi-
tions and the character
of the singularities
vary wi&th ¢ and k, so
qulte different types
of directional fields

apply, for example, to
various domains of k.
In his (unpublished)

dissertation, however,

Hafele made a precise
survey of all possi-
bilities and found that
a physically regular

Fig. 5. Directioconal field of 4dif-

ferentlal equation (30) in projec- solution which is of
tive coordinates, from (33). For . .

kK=1-n = 0.38927, front point special interest to us
A lies on separatrix II. The stan- can in any case only

dard solution begins at A and

follows separatrix II through exist in the directlonal

P2’3 to Pg. From [13]. field associated with
the region
x — | ... N - 7 a
Mt < k< ‘-“-i-_ﬂ" T.e.025 <k <0454 FOP » = 5 (34)

Figure 5 applies to this region. The front itself is repre-
sented by point A, Since the coordinates of point A are a
function of k, and the behavior of the solutions is a functio;
of ¥« and k, the following different possibilities exist for
the position of A in the field of solutions, depending upon

the choice of the two parameters:
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A lies:
1. to the right of separatrix III
. on separatrix III
between III and II
on separatrix II
tc the left of II.

L 3 I g TR B \ O

The solution which passes through A here proceeds toward
P6 in the first three cases, via P2,3 toward PB in the fourth
case, and toward PM in the last case. The path toward PM leads
over the line p + v = 1, however, which represents a reversal
line.

¢) The Nature of the Singularities. The problem of the

reversal lines is treated extensively by Tollmien [15, 16]

and Guderley [9] and is summarized by Hafele in [17]. The

type with which we are dealing is merely designated "reversal
line with expansion"; it cannot be realized physically with
any initial arid boundary conditions. In mathematical terms,

it is characterized by the fact that, for constant t, the
solution cannot exceed a certain ic and becomes a closed curve,
1.e. becomes two-valued. A clear, but inexact, representation
would be that in which matter is sucked up from the rear at

X, To be exact, however, this would have to occur at super-—
sonic veloclity, but this is physically impossible. Thus case 5
must be ruled out for our program.

On the other hand, let us conslder the convergence of
soiutions toward P6. According to Hafele, this point is
located at & = const, i.e. at finite x. At it, p =0, p =
= const and T = =, From the fact that temperature becomes
infiniteg,,HéfelelcallS.PﬁAan "energy resupply." . We do not .
2In [20], Hafele presents a solution which approaches Pg with

finite temperature. 1t does not satlsfy.the front conditilons,
powever.
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consider this to be totally correct. Since pressure equaliza-

tion has already occcurred (p = const) and since thermalucon-—
ductivity is neglected in all cases, no thermal energy is /395
likewise introduced at P6J We weould rather derive another
interpretation of P6‘ Fo this end we study the question as to
whether matter passes through P6 or not. We desighate gas

veloeity at P6 as_Us and the velocity of point P6 itself as V6.

kS

1. Convergence toward separatrix III. Since X5 = 0,
then, with (32), v = 0. With (28) and (20), we then alsoc have
Ug = 0. According to Hafele [13], £ = 0; i.e., from (25),
Xg = const = 0 and thus V6 = 0, We thus obtain U6 = V6; no

matter passes through P6.

2. Convergence with v = 1 (Fig. 5). According to Hifele,
£ = const (=g6) here; by differentiating (25) we obtain

Vem (- b gt |

On the other hand, v = 1 and £ = const yield, in accordance

with (28) and (20),
Ug = Uo(l — ) - Eqft*. 4

By substituting (28), (25) and (20) into front condition
(3) -~ and by comparing the result with (31a) -- we can seeu
that v is normalized in Hafele's article in just such a manner
that it presumes the normalization of UO = 1. Thus here
again, and thus in all cases,

Ug = Vg (35)

We can therefore interpret P6 as a rear boundary consisting
of an impenetrable wall. Since this wall is motionless at
k = 1/3 (since v = 0), this case 1s suitable for describing
shock waves produced by planar explosion at a fixed wall.
(The corresponding case of a spherical explesion has °
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been solved analytically by Taylor [18]. In [19], Culler and
Fried point out the possibility of approximating conditions
in a shock tube with this solution, k = 1/3.

We must rule out convergence toward Py for the problem
assoclated with our program, however, since no fixed:lwalls
exlst in the cosmos. We must look for a solution which repre-
sents free flowoff to the rear. The only sclution with this
property 1s, according to Hafele, separatrix II, which we will

cover in the next section.

5. The Standard Solution

If we wilish to avoid convergence toward P6’ we see from
Fig. 5 that the solution must eross the line w + » = 1. This
is only possible 1n a physically regular manner, however, at
singularity P2,3, i.e. only on separatrix II. The numerical
solutions (for various k) obtained by Hifele go: past Pé’3
quite smoothly for p, p, T and u, and further convergence
toward P8 can be interpreted as free flowoff into vacuum.

Hafele was even able to give the analytical solution for
the special value ¢« = 7/5 (eclose to the value applicable to
alr), which we wish to show here in abbreviated form for fixed /396
time, only (o = const):

de
W~ 1 - 5 &
f~tdad (36)
P~ (L ad)
0~ ([ ~f a&)“f:_

The value of k associated with separatrix II will be called ko
below. For « = 7/5 we obtailned k, = 2/5 = 0.4,
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Quite extensive computations were necessary for other
values of k: With various values selected for k, Integration
was carried out from A until the solution turned to the right
or left in front of P2;3; we were thereby able to graduallyy
approach ko' Table 2 shows the results.

TABLE 2. HOMOLOGY PARAMETER k, FOR THE STANDARD SOLU-
TION WITH VARIOUS SPECIFIC HEAT RATIOS k.

xl- ky

1,1 | 043112 4+ 0,00001
1.4 | 04 '
3/3 | 0,38927 4 0,000005
2,8 | 0,373296 L 0,000005

We have already shown the distribution of u, p and p in
the standard soclution in Fig. 4 for « = 5/3. It is tabulated
in Hafele [13], and the distributions are also shown there in B
the form of flgures for other values of x. Behind the front,
u, p and p always decrease monotonlically, while temperature
increases sharply for small values of «, only gently for « = 5/3,

and decreases monotonically for « = 2.8, A striking feature 1s

the curve of velocity u, which in all cases is almost (for «
= 7/5, exactly) linear and whose slope is also only very
slightly dependent upon k. We shall return to this in Section C.

Singularity P2,3 is not distinguished by anything in the
distribution of u, p and p,3 but is in the pattern of charac-
teristies. All ¢t characteristics passing through the front
and P2,3 reach the front after finite time, whereas no charac-
terlstlc from the region behind Pg’_3 reaches the front. This
means, however, that the front 1s no longer in any way affected

. by the region behind‘nga;,thus.the.behavior.ofAthe.front is not

3In Fig. 4, P, ., is at x = 6.4,

2,3
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affected by how the solution is continued behind P2 3" And

since P itself moves along a ct characteristic,. the entire

region iying between P2 3 and the front is unaffected by the

region behind P2’3 (Prov1ded only that, say, additional shock
wave fronts are not generated behind P2,3.) We have thus come
closer to the question posed in Section II,A,3: "From what /397
initial distributions can a standard solution eventually be
assumed?" The answer is: "When a CT characteristic which only
reaches the front at t = « begins within the inifilal distribu-

tion selected." We cannot immediately see whether this 1s the

case or not from the initial distribution, and we must thus

be satisfiedywith the qgualitative condition of no resuppiy.

C. Linear Solutiocns

1. Starting Point

We pointed out in the preceding section that the standard
solution which is eventually assumed exhibits a veloclity curve
which is approximately linear in x for all values of k for
which calculations were made. The curve is in fact exactly
linear at k¥ = 7/5. Thus the gquestion arises as to whether,
first of all, baslc hydrodynamic equations (1) can be solved
generally with the additicnal requirement

u{x,t) = Ax + B (37)

(upper-case letters = functions of time only) and, secondly,
whether the "linear soluticns" so obtalned are sultable for
the approximate description of shock wave fronts. This has
| been studied by the author in [21].

2. Results

Tt %48 found that we can give the general solution to (1)
under requirement (37). We wish merely to present the results

here; they have the form:
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u{zx, f) :f;¢0+g§-y
oz, t) =871 Dy)

(38)
plw, ) = 8'h.¥(y) |

whe
re #la, ) = {x — u{t —£,)}/S. }
Here, U, and to are constants, and time function S8 is given by

85273 2 4 = const (39)

¢ and ¥ are functions of y; one of these 18 arbitrary; the other

is given by the relation
¥1/e = —ay (40)

It was also found that entropy is a pure function of y,
and this means that the lines y = const are "life lines"
{(particle trajectories). We could thus also conceive of (38)

as a special separation theorem in lLagrangian coordinates.

Expression (39) is easily integrated. Depending upon the
choice of o and an additional integration constant g, we obtain
the three general solution types 1, 4, 6 in Fig. 6, while dashed /398
lines 2, 3, 5 represent limiting cases. (Thus in the case of
solution 5, for example, u = 0 for t = «.)

The second striking

characteristic of the
standard solution is that,

as a good approximation,

pressure is proporticnal
to a power of density for

a very broad region behind
the front:

Fig. 6. Solutions to the Eulerian

= .Y:
equations with a linear velocity p(x,t) = P(t)-p', mhere

curve. The distance S between Yy = const; (41)
neighboring "life lines" 1s plotted ,
over time t. From [21]. we obtained vy ~ 0.8. For
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this reason, a similar approach was used in [21] to study
whether the'general.solutioﬁ to (1) could be glven if require-
ment (U41) were applied instead of supplementary reguirement
(37). It was found here that (37) follows from (41) and (1).
This means, however, that the solutions singled out by (41)
are a subgroup of linear solutions. Thus (38) and (39) again
apply, except that now no function of y 1s arbltrary any more:
density is a power, determined by y, of an expression which is

quadratic in x.

3. Application

It was possible to show that the front conditions are not
compatible with requirement (37) except at k = 7/5; see (36).
The linear soluftions are quife suitable, however, for an
approxlimate representation of the rearward region of the stand-
ard solution, especially its subgroup (41), which again holds
exactly at ¢« = 7/5. For a linear solution, Uy mast be a constant
and, due to (40), (px/p)x = const likewise, while subgroup (41)
also requires that y = const. We ask how much these quantities
deviate from constancy in the case of the standard solution,
and give the magnitude of deviation in percent, relative to
the value applicable at the front, in Table 3. Velocity u has
been used as a.comprehénsible scale; it is normalized to 1 at
the front, drops off to The rear and becomes negative. The
region which i1s of interest for application probably llies within
the interval +1 > u > -1, in which density falls off by as _
much as a factor of 30. Table 3 shows that within this region,
all requirements are still satisfied relatively well. An
additicnal example of a linear solution is isentropic flowoff
into vacuum as treated by Burgers [22] and Pack [23]. If we‘
consider a quiescent gas of constant density and entropy in
the half-plane x > 0 and vacuum in x < 0 at t = 0, then a
widening transition zone propagates on both sides of x = 0 for

£ > 0, in which velocity 1s a linear function of position.
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TABLE 3. DEVIATIONS IN THE STANDARD FRONT AT « = 5/3 - /399
- RELATIVE TO THE LINEAR SOLUTIONS.

L ) U { (Pz/(’}z ¥
O - 2% | — 6% | -k 1,3%
— 1] + 4%, — 24%, | 4 2,39,
~ B k7% | —47% | 4 40%
+6.29,

— 10| +11% | —83%

In summary, 1t appears as 1f Tlowoff processes into the
vacuum exhibited the general tendency toward linear flowoff,
slighly perturbed under some clrcumstances by boundary condi-
tions not compatible with 1t.

D. The Stability of the Standard Sclution

A solution will be considered stable 1f neighboring solu-
tions approach this solution asymptotically with increasing
time. It was found in Section IX1,A,3 that all nine quite
varied initial distributions actually do approach the standard
solution asymptotically; this can be taken as a strong argument
in favor of its stability. On the other hand, this type of
"experimental mathematics" is of course not capable of providing
real evidence of stability. The purpose of this sectlion is thus
to seek analytical evidence o¢f stability. Since this question
cannot yet be considered satisfactorily answered, we gshall cover

i1t only briefly.

1. F. Meyer's Treatment [24]

For the purpose of analyzing the timewise development of
any solutions, F. Meyer introduces the derivatives with respect
to position, made dimensionless, at the particular front position:
@ = (%5 UfUZ} Front 1]
B = (44 %*/23) Front

Y= {og 5 uazju;) f‘mnt

(k2)
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as well as the derivative, made dimensionless, in the direction

of the front curve,

d 1 a  ay |
E"E'(Vﬂﬂ"ﬁ)';

The system of ordinary differential equations can then be
derived {(for « = 5/3) from basic equations (1) and front condi-
tions (2) and (3):

Z_“ — — 0,4168 -- 0,8¢* — 1,352 — 0,0519 |
n -

. . y
B o 04ty + (1,2¢ — 131)8 — 5,21 a* — 0,355a — 0,0205. (43)

4y

Both (42) and (43) could be taken to derivatives of any ~ /400
order. However, the equation for the nthuderivative always
includes - the (n+l)th derivative, so the variation in the
highest derivative can never be calculated. A number of
studies by Meyer have shown, however, that the higher deriva-
tives have only a very slight effect on the dow-order deriva-
tives, so, for estimating conditions, it appeared reasonable
to break off series (42) at y, and to consider ¥y constant
in (43).

We can now formally assign a homology solution to any
solution by requiring agreement at the position of the front
for all first and second derivatives (precisely all free para-

meters of the homology solution are then used up). Homology
parameter k is determined'by

1/k = 13/5 + (9/10)a (44)

If the solution to be studied is a homology solution, then
o = const and B = const '
must hold.
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We show the directional fileld for system (43) in Fig. 7.
The heavy lines are separatrices; the perimeter is infinite
distance on the d,B-plane. Let us conslder singularlty Pl'
It is characterized by the fact that de/dn = 0 and dg/dn = 0
at it. Thus, due fto thé constancy of & and B, 1t represents
a homology solution. In addition, only solutions entering it
exist, none which leave it. This means, however, that all
neighboring solutions approach the solution represented by Pl
with time. P1 thus represents one (and indeed the only)
stable sclution. 1In actuality, ¥ will of course vary with time,
in a manner which 1s not determined by the method applied. But
even 1f we consider v to be constant, the position of point P1
8till depends upon the choice of y, and the same then alsc applies,
with (44}, to the resultant k. Since the relationship k(y) is
only a very weak one, however, the uncertainty of k is likewise
only slight. If only relatively small values of y are con-
sidered, Meyer ultimately finds that

0.39 + 6% for -1 < y < +1, (45)

In spite of its short-
coming (constancy of y),
this method is thus capable,
first of all, of providing
a good approximation for
Ko (ko = 0.368927 + 0.001%;
from Table 2) and, secondly,
of indicating the stability

of this solution. Thisy /401

Fig. 7. Directional field for too, 1s of course not a
system (43). The stable solution proof in the strict sense;
;io;e€§§§?nt8d by singularity P,. the convergence of the

method could not be demon-
strated for the inclusion of higher and higher derivatives in
(42). Moreover, the following is still.unsatisfactory: We know
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from the preceding sections that one physlcally regular (supposedly
stable) solution exists,'as well as a unidimensional variety of
other (poésibly unstable) homology solutions. The one stable
solution is included in Fig. 7 (Pl), but not the variety of

other homology solutions. For each value of o (and not Jjust

at the additional singularities P, and P3), there should exist

a solution with the property de/dn = dB/dn = 0. The reason

for this lies in the arbitrary establishment of a specific

value of vy.

2. Hafele's Treatment [17]

Since we believe we can refute the validity of Hafele's
results by means of a counterexample, we merely wish to ocutline
the rather complex derivation gquite briefly here; we refer the
reader to the original article [17] regarding all details.

In order to be able to better follow the transition from
a general soluticn to the homology solution belng sought with-
regard to the equilibrium establishment process, Hafele chooses
a notation similar to that of homology solutions (20) and (25)
or (28). And if it is thereby to be possible to also describe

general solutions, it is necessary, first of all, to set
n = n{t). (46)

Secondly, Hiafele replaces homology variable & with a guantity

¢, which we wish to call £¥ here, however:

[

¥ (z,0) = 33/ { n(r) - " -1ldr.

0

(47)

4t the front, once more,
£} = const. (48)

In the case of homology, n(t) = const, and thus £¥% becomes
identical to £ in formula (25). Thirdly, the functions v and u,
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defined in a manner analogous to (48), are also explicitly
dependent upon time via time function n,

v = v(E*,n), u = u(£*,n); (49)

this dependence upon time vanishes again in the case of

homology.

Hafele also limits consideration to general solutions
which lie in the nonhomologous vicinity of standard solution
n = ng, and for which the following three conditions apply:
A. The solution crosses the point u2 = (v - 1)2, i.e.
reaches farther to the rear than the vicinity of P2 3"
>

B. No second shock wave front may be generated in the
region behind the first front.

C. In the vicinity of P2 35 av/én, du/dn and slnp/an
>
have the same sign as in the case of homology.

Under these conditions, Hifele is then able to derive the /402

Fformula
dn/dt = (n - no)-e; 6 < 0. (50)

It states that if all assumptions are valid, n apprcaches ngs

that a nonhomoclogous solution thus approaches. the latter.
asympfoticalliy from the vicinity of the standardrsolution.

Counterexample. For clarity, we first establish
that, according to Hifele, time function n(t) 1s related to
front velocity V(t) by

V = n-L. EE = const - nir-L (51)
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Secondly, Eq. (50) states that if n = n, at some time, then
n = n, is also true at every later time. Thus the value n,

can only be approached by n(t), but cannot again be left by it.

As a counterexample we select the standard solution with a
small perturbation wave, moving toward the front, added in about
the center between P2’3 and the front. Thus except for the small,
spatially limited disturbance, this initial distribution is

ldentical to homology solution n_ over the entire remaining

o}
region. Conditions A and C should thus be satisfied. Moreover,
the perturbation is assumed to be small and "flat" enough to

also satisfy condition B. Thus (50) should apply.

We now consider the behavior of the front. During the time
in which the perturbation has not yet reached the front, the
behavior of the front is that associated with the standard solu=
tion. Thus during this time, n = n, according to (51). At the )
time at which the perturbation exerts an effect upon the front
and alters its velocity, according to (51), n # n,. This
contradicts (50), however.

Discussion. We wlsh to present two reasons for this
fallure. First: it can be shown that statements (46) through
(49) are still not sufficient to describe general solutlons,
Thus, in our example, n = const = ng until the perturbation
has reached the front. During this time we also have ¥ = ¢
(for all x) and, according to (49), v and u should then be
constant along the lines & = const of the unperturbed standard
solution (likewise for all x)}. Once a line £ = const is
reached by the perturbation, however, this statement becomes
incorrect.

Secondly, what condition C actually means appears to be
somewhat unclear. On the one hand, we could ohject that 3v/dn
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is a time derivative in the nonhomologous case, whereas the
homology scolutions are constant with time. In the nonhomelogous
case, on the other hand, the variation in v in the vicinity of
P2,3 is related via the derivative 3v/3n to the variation in

n at the position of the front, in accordance with (51), which

does not appear to be very meaningful.

In [25], Hafele provides a proof of stability, carried out
in an analogous manner, for CGuderley's [8] spherically sym-
metrical compression shock. Here, too, it is possible to raise

the dame objections as those just discussed.

In summary, our critique can be formulated so as to show
that in the case of Hifele's theorem, the explicit time depen-
dence of the functions v, nu and lnp degenerates not only {per-
missibly) in the case of homology being sought for all x, but
also (impermlssibly)} for every bounded time interval within "/403
which front velocity temporarily follows a homology solution
for any rearward region. Thus the general solution cannot be
described with thils theorem, nor the general vicinity of the
standard solution. To be sure, a special type of nonhomologous
neighboring solutions may exist which is covered by the theorem.
The procf of stability would be valid for this type 1f it

proved possible to clarify condition C.
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III. The Strong Front with Radiation Loss

We showed in Section I,1 that velocity u and Mach number M
fall approximately within the intervals

5 < u < 1000 km/sec, 1 < M < 100 (52)

for interstellar matter, and it was found in Section I,2 that a
turbulence-like steady state with M > 1 1s only possible if the
heat generéted by dissipatlon is radiated off again at a sufficlent
rate. Thus the purpose of this section 1s to study the radiation
process of fast shock wave fronts in detail, as well as the effect
of this radiation on the distributions of density and temperature
behind the front.

Radiation processes have already been treated by Plkelner
[26], but various hydrodynamlc aspects were neglected. Hertweck
[27] therefore undertook a new treatment of energy radilation,
taking the hydrodynamic requirements into consideration; he re-
stricted himself to the case of the steady front. His results
were then to assume the role of front conditions for the non-
steady case, but this has not yet been undertaken.

Since radiation "cuts off" temperature,’ so to speak, - -
von Hagenow [28] studied the l1sothermal nonsteady front as the

limiting case of very strong radiation.

A. Hertweck's Treatment [27] of the Radiation of Energy

Hertweck treats the case of a planar, strong, steady shock
wave front which enters a quilescent region ahead of it of con-
stant density. Hertweck uses the following values for the density,
temperature and degree of ionization o of the region ahead:
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7y = 1 Atom/fem?®
To= 1007 (53)
g, = 0,01.

Calculations relating to hydrodynamics and electron density
are made only with pure atomic hydrdgen, while helium and an
admixture of heavy elements are considered with regard to radia-

tion processes.

The individual cross sections and radiation functlons were
taken from the availlable literature and usually approximated by
simple interpolation formulae. The resultant differential equa-
tions were. solved numerically. Since space considerations make é&gﬂ
it impossible to discuss the extensive calculations and estimates
here, we merely wish to provide a rather qualitatilve description

of Hertweck's results.

l. The Front

As before, we consider the actual shock wave front to be only
the reglon of the thickness of several free path lengths within
which the translational energy (relative to themotichnless front)
of the matter in the region ahead 1s converted 1lnto thermal energy.
Sinece only a pure directional dispersion 1s involved, only a
few collisions are required for this. An energy loss due to
radiation or lonization can not yet occur, since the electrons
(at a given velocity) have less energy, by a factor of myy/Me = 1830,
than the hydrogen atoms and protons, and sirice the latter assume.
ionization cross sections on the order of 10‘16 cm2 only at

velocities above 1000 km/sec.

We thus obtalin temperatures for the atoms and ions which can
be calculated from our own modified front conditions (2) and (3),

T,(0) = 22.5V2, (54)
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where front velocity V is to be measured in km/sec and the tem-
perature T, of neutral hydrogen atoms and protons at the position
of the front (x = 0) is measured in degrees absolute. If we
replace front velocity V with Mach number M = V/ag, we obtain,

|
T,,(O):TOI%M“ (55)

where ag = sonic velocity ahead of the front and Ty = temperature
ahead of the front.

Density also jumps by a factor of 4 in accordance with (2)
without change.

2. Establishment of Temperature Equilibrium

Only a few collislions are likewise necessary 1n the case of
electrons for pure direétional dispersion, but énergy exchange
proceeds slower by a factor of about mH/me. The more energy the
electrons receive, the sooner they alsc lose energy again
through excitation and ionization. Thus an equilibrium tempera-
ture Tg(xy) for the electrons 1s established within a dlstance
¥]1 behind the front. This equilibrium-establishment process is
shown in Fig. 8; the values in (53) have been used for the region
ahead of the front.

An estimate indicated that for the orders of magnitude invol-
ved, it is permissible to neglect the deviations from Maxwell
distributions for electrons and atoms. It is thus reasonable to
apply the concept of temperature to both. Since the temperatures
of neatral hydrogen and protons differ only slightly, their
(weighted) mean temperature was used as Tp. Tp is still almost /405
unchanged in the first region behind the front: Ta(xy) -~ Ta(0).
Fig. 9 shows temperatures T, and Te(xl) as functions of front

W
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Fig. 8. Establishment of Fig. 9. Front temperature
equilibrium in electron Ta of ions and H atoms, and
temperature T, behind the equilibrium temperature Tg(Xq)
front with the radiation of of electrons (Fig. 8), as

coenergy; xXjoonv 1016 cm for functions of Mach number M
the values in (53). From for values in (53) for the
L271]. region ahead of the front.

From [27]1].

velocity. The relative difference between the two temperatufes.

continually increases with increasing front velocity.

3. The Onset of Ionization

Since essentially only the electrons can "ilonize," we must

expect ionization to increase:exponenéially with time if density

and temperature do.not change appreciably. Since temperature

decreases as the result of radiation and density thus increases,

the inecrease in ionization ultimately becomes very steep, which

in turn produces a very steep dropoff in temperature and steep

rise in density.

Hertweck obtains a system of three first-order differential

equations for density, degree of ionization and temperature.

Fig. 10 shows the results of solving numerically for the values

in (53) and a front velocity of V = 100 km/sec (M = 85). The
rise in electron temperature Te up to equilibrium temperature

1
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Fig. 10. a) Curves of Tp and To behind the front. ©b) The
same for gas density n and degree of ionizatlon o.

, The calculations were carried only to the polnt at
which Tp and T, become approximately equal. The width (.
(X3 - X2) of the steep compression region amounts to several
hundred free path lengths. From [27].

Te(xl) has been neglected here, i.e. the calculation already
starts with Tg(x7). We see the at first exponential and then
sSteeper rise in the degree of lonlzatlon. A particularly striking
feature, however, is that density remains approximately constant
over almost the entire reglon, and increases quite steeply for
the first time in a very narrow region (X, to x3). The same also
applies to the dropeff in temperature. The width (X3 - Xp) of
this compression zone is on theovorder of 1015 cm, and an estimate
of the free path lengths of c¢harged particles within this region
yielded 2.1012 em. The cbmpression zone is thus still several
hundred free path lengths thick, and a hydrodynamic treatment of

it is thus reasconable.

For x > x3, temperature continues to drop off as density
increases. The degree of ionization becomes approxlmately constant
over a relatively long region, and then decreases..agaln. Ad-
ditional assumptions which concern not only cutward radiation
but also i incoming radiation of energy are necessary for the

region farther to the rear, however.

48



4. Comparison with Observation and Experiment

Hertweck offers the Cygnus Nebula as a possible example of
strong shock wave fronts with radiation. The spectra of the
nebular filaments have been studied by Chamberlain [29] and
Pikelner [26]. Strong lines, compared to H,, are found for the
forbidden N II, O II and O III transitions. It has not yet
proved possible to find a star in the vicinity of the nebula which
is sufficiently hot for this excitation. On the other hand, the
annular structures can be easlily interpreted as the expanding
shell of a nova explosion which took place in the past. The
jacket of gases, expelled at high velocity, forms a strong shock
wave front as it enters the interstellar medium; the gas in the
region ahead which passes through the shock front is heated and
radiates the thermal energy off again. The mass of gas moving
behind the shock wave front forms the energy reservoir.

The thickness of the filaments is about 5-1016 ¢cm, ac-
cording to [29]; even finer structures can be detected with in-
struments of higher resoclution. Theoretically, the longitudinal
scale is approximately inversely proportional to the density
ahead of the front, and since this density is not known relatively
accurately, it is lilkewlse not possible to make an exact com-
parison with the calculated results. We can at least say, however,
that reasonable orders of magnlitude have been obtained.

. Shock Tube

Kantrowitz et al. [30, 311 have generated shock waves up to
Mach number M = 17 in argon; up to 40% lonization was obtained.
Distances were observed between the actual front and the beginning iﬂgl
of luminescence (xp in Fig. 10) which fit an estimate by Hertweck
well, A theoretical article by J. W. Bond has since appeared in
which he treats shock wave fronts in the shock tube similarly to
the manner in which Hartweck treats those in interstellar matter,
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and he also obtains similar results. Additional shock wave ex-
periments are conducted by Locte-Holtgrevenetal. in Kiel [331.

B. von Hagenow's Treatment [28] of the Isothermal Nonsteady Front

Hertweck's calculation was carried out for the steady front.
In order to also obtain an approximate description of the un-
stable case from here, we could neglect the thickness of the
region lying between the front and x3 and treat all changes in
state variables as discontinuities. Thus we would again have the
region ahead of the front, the front itself, and the region to the
rear, with the region to the rear starting behind X3. The appli-
cable front conditions could be obtained from a generalization of
Hertweck's results to any front conditionsand any variables for
the region ahead of the front, and would be functions of.the
chemical composition«@f.the gas.

In the case of very strong and rapid radiatilon loss (and for
a region ahead of the front whlch is already relatively hot ), we
can expect temperature within the newly defined front region to
have decreased again to almost the temperature of the region
shead. For a sufficiently strong radiation exchange, the tempera-
ture farther behind also cannot drop below the temperature ahead
of the front. It thus appears reasonable to consider the limiting
case of spatially and temporally constant temperature, which
yields relatively simple and understandable formulae. Von
Hagenow 1s studying these "lsothermal shock wave fronts" in a
project which has not yet been completed. The work will be pub-
lished in the future.

1. Basic Equations

The following are chosen for normalizing density, gas
veloclty and sonic velocity:
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e =1

'!l.o=0 ‘ (56)
a‘(!:l!
and the abbreviation ” Iné==n,

is introduced. The first two basle equations (1) then read:

N+ unp =0

1y +uuz+'1;z=0. (57)
In place of the third equation (1), we have substituted the
constancy of temperature in the form
- a%4 =
p = agh = p. (58)

In place of front conditions (2) and (3), applicable only to strong /408
shocks, we now have front conditions applicable to any shock

strength,

-u=V—u},,\ (59)

where only the first equation is a boundary condition in the true
sense, since here, too, the front is reached by one characteristic
of the reglon behind. See the text regarding equation {(2).

A concept of the strong front does not exist here, since the
temperature of the region ahead cannot be neglected now, because
T = ¢const, in contrast to Section ITA. This is supposedly also
the reason why there are no homology solutions compatible with the
front conditions, as von Hagenow has shown. Consequently, thére
can likewise be no such simple type of "standard solution" 1like
that in the preceding part.
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2. Computational Method

A method of characteristics was selected analogous to that
in Section IIA,1. The two characteristics have the directions

¢C'=u+1, C =u-=-1 {with aq = 1), (60)

and the hodograph equatlons read

(@ 4 i) 4 (2 1) {w = 7); = 0. : (61)

u 4+ 5 =const along C=*, (62)
- i

Thus

This means that u and n are known exactly at the intersection of
two characteristics, and only the position of the intersection
remains to be calculated; this has been done to a second approxi-
mation. Computational precision was estimated at about 1% over

a relatively long time interval; and distributions at given times
were again interpolated linearly in the network of characteristics.

3. Higher-Order Front Conditions

For most of the initial conditions for which von Hagenow
has previously made calculations, a second shock wave front
(moving to the rear) was formed on the ¢~ characteristie whilch
arises at the front point at the starting time. We believe that
this can be avoided by a suitable cholice of the initial distribu-
tion and that only those initial distributions are meaningful
which do not form such a front. Since similar éonditions can also
oceur in other calculations, we wish to insert a general discussion

of front conditions.

Front conditions (59) are assumed to apply along the front,
from which we can eliminate front velocity V,

i
wEet =2 (63)
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If we now define a function f(x,t) with /409

“f:TLZ—*—Z-H%‘_Os (614)

then the front condition reads
=0 (65)

Since this is to apply to all times, however, the derivative of
f must also vanish along the front:

g—f +V gg =0. for « = X(#) == ;position. of fron% (66)

We shall call (66) a first-order front condition; thus normal
front conditions (59) and (63) become zZeroth order front condi-
tions. By further differentiation in the direction of V, it 1is
possible to derive front conditions of increasingly higher order

in.the:same manner.

If we substitute (64) into (66), we obtain a formula which
still contains partial time derivatives ugvand pg. I we eliminate
these time derivatives with the aid of basic eguation (57), we
obtain the following as a first-order front condition after
several 1ntermediate calculations:

ne ¥ 143
It el B=T7757 (67)
Balfor V1. (68)

We now return to the cholce of initlal distribution. If the
boundary is suppesed to represent'a front at t = 0, normal front
conditions (59) must of course apply there. If this were not so,
the boundary point would be singular with respect to its values
of u and n. If the boundary is also supposed to already have been
a front shortly before (t = -g), the first-order front condition
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(67) must also be satisfied. If this were not the case, the
boundary point would be singular with repect to the first

derivatives.

The same argument can of course be extended to higher and
higher derivatives, but these have less and less practical im-
portance. Thus it was found for the fronts calculated in
Section IIA that a second front is generated on the C~ charac-
teristie originating from the zero point only 1f the.normal front
conditions are vioclated at the beginning. Now the isothermal
fronts are apparently somewhat more sensitive and also demand the
initial satisfaction of the first-order front conditions. But
this then seems to be sufficient. Condition (67) was satisfied
quite well in one of the initial distributions calculated; this
was the one distribution for which a second front was not
generated. We must thus be careful that we do not select any
lnitial distributions which are slngular in the sense that the

front was not a front in the past.

L, Results

.
=
'.._l
o

The most striking aspect of the examples calculated was that
velocity became a linear function of position after a brief time
(within the 1limits of computational precision). The logarithm of
density, n, also almost became llnear, with a barely perceptible
curvature. As an eXxample, Wwe show the same distribution at two
different times in Fig. 11. The slopes of the curves (close to
the front)} obey equation (67) here, from which we see that the two
curves cannot be madé to coincide with the curves for a different
time by means of the same scale transformation, as could be done
in Section II,A,H4.

In a manner analogous to Section IX,C, von Hagenow has also
studied the class of linear solutions for the isothermal case.
The general solutlion can agaln be given, but it also does:not

54



&
;-‘
u
(=Y
I~
-
L]
2
ot

1 i g/ L83 fM=an)

o

1 " r ;
'; i I 1 { 1}’ | X
| 27 22 23 2# o5 2.6 2.7

Fig. 11. Example of the development
of a nonsteady isothermal front with

t£ime (u = gas velocity, p = density).

a) initial distribution; b) and

c¢) distributions at different  -time
intervals. OQthersinitial distribu-
tions yield the same distributions
as these for a given Mach number

M (after an adjustment period).
From [28].

found.

satisfy the front condi-
Thus, for the
distribution which is
established, velocity
cannot be exactly linear

tions.

in x, but fthe linear
solutions do seem to be
well suited to an approxi-
mate representation of

the region to the rear. In
the isothermal case, no
arbitrary function remains
free for the linear solu-
tions as before; n 1s now

guadratic in Xx.

The following was also

If we consider two different initial distributions, the

distributions asscciated with equal front velocities V are equal to
one another after a short "adjustment time™ if we suitably

normalize the x-scale.

If in place of n(x,t), for example, we

now write n(y,V), making use of V(t) and y = x - X, we then obtain
the following after a certain period of time for two different

initial distributions:

ny(y,V) = ns(ey,V) with e¢ = const, (69)

and similarly for u(y,V).

It should be noted here, though, that /411

(69) would be trivial and would follow from (67) if u and n were

linear in x.

And whether (69) also covers the slightly nonlinear

portion of curves u and n can still not be answered clearly enough

with calculations made so far.

A somewhat more far-reachling test of the same state of affairs

also provides conflrmation, however.

Let us consider front
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velocity V as the parameter for two different initial distributions
and define tl(V) as the time at which the first distribution has
reached the value V and t,(V) as the time at which the second
distribution has reached V. By eliminating V we then obtain a
function te(tl)' For the examples calculated, it was found that

t, = a + bty with a, b = const (70).
in all cases afiter a short adjustment time. Fig. 12 shows an
example. Here, the fact that a # 0 means that the two distrlbu-
tions require different adjustment times, and b # 1 indicates a
difference in time scale for development, caused by different

widths of the iniltilal distributions, i.e. by different x-scales.
This reduces to (69) and it can actually be shown that (70) and (69)
mean the same thing. Here, b = ¢, since

dV 3 1

_E?=(2_E_?)'ni%nz (71)

can be derived from the front conditions and (67), whereby the
time and position scales are related to one another.

In summary, it can be sald, first of all, that the isothermal
front can have no time-independent standard solution as in Section
IT1, as can be seen Jjust from (67). Secondly, a type of time-
dependent standard solution appears to exist (rather, V-dependent),
and we should study whether a time-independent part can be
separated from it. Thirdly, the linear solutions are good approxi-

ki
mate representations, just as before.

A satisfactory answer to the problem of the standard solu-
tion, or a good approximate description in simple form applicable
to all V, would be necessary for this chapter on isothermal fronts
to be consldered complete. Also necessary would be an estimate
of the physical conditions under which the isothermal approximation
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can be valid as a description of

a single shock wave front. And we

also should try to determine when

a Tield of statistically distributed
fronts may be described in this

manner. (For example, we could ask: /412
1f enerpgy exchange by radiation is

high encugh for :isothermal. behavior,

Fig. 12. Times £1(V) ana can momentum exchange by radia-=:

to(V) after which two dif- tion still be neglected?)
ferent initial distribu-

tions possess front velocity

V. See text regarding IV. Steady Front in a Magnetic
equation (70). From [28]. Field

1. Introduction

A large number..of articles already exist on the presence of
magnetic fields inccosmic objects and on the area of magneto-
hydrodynamics stemming from this and related problems; the
reader is referred to the bibliographies 1n Liist [34, 35]. We
estimate fields on the order of 10'6 Gauss" for interstellar
matter. If an ionized gas (= plasm) is in turbulent motion,
electric currents arise (due to the differences in masses of
electrons and ions), and thus magnetic fields are formed. In par-
ticular, all magnetiec lines of force. already present are eddied
by the turbulence, and their density is thus increased. An expo-
nential increase in field strength, with time, results until the
energy density of the magnetic field becomes:comparable to the
energy density of the turbulence. From this point on, the tur-
bulence is strongly influenced and retarded by the magnetie field
(e.g. anisotropy).

* Higher field strengths, up to 10-3 or 1072 Gauss, also ocecur in
certain objects, such as the Crab Nebula.
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Under conditions which cccur in the cosmos, it is & charac-
teristic of a plasmaina magnetic field that matter and lines of
force practically "eling together'": elther the matter takes the
lines of force with it as it moves (weak field) or can only move
parallel to the fixed lines of force (strong fleld). This 1is
caused by the fact that we can reckon with practically infinite
electrical conductivity o. We present some data in Table 4,
taken primarily from an article by Schliiter [36], for comparing
cosmic conductivities with metals and types of discharges on
Earth.

TABLE 4. ELECTRICAL CONDUCTIVITY o (IN esu = sec~1)

log o log ¢
Center of sun 18.3 Solar photosphere 12.9
Copper 17.°7 Arc discharge 12.9
Mercury 16.0 Interstellar matter
Solar corona 15.7 HIT region 12.7
Graphite 14.6 HI region 11.8 to 10.6
Glow discharge 13.6 Windew glass - =1.0
Paraffin =4.7

The decay time 1 of a magnetic field due to ohmic losses is
the ceriterion for évaluating conductivity:

T = (72)

where I is a length characteristic of the magnetic fiedd (such as /413
the radius of curvature of the lines of force), and ¢ is the
velocity of light. Even with log o = 10.6 for HI regions, assuming

small structural details of 7 = 0.01 pc ='3-1016 cm, we obtaln

t = 10Y° years. This means that we can reckon with practically
infinite conduetivity for times within the universe's age of

5-109 years.
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Liist sets up the equations in [34] for steady planar fronts
of any strength in homogeneous magnetic fields of any strength and
any direction, and dlscusses the various types of solutions in
[35]. Liist's results could again assume the role of front condi-
tions for nonsteady fronts.

2. The Basic Equations

If friction and thermal conductivity are neglected, the basic
magnetohydrodynamic equations have the foliowing form in the
steady case:

a) The equation of motion:

1
@(ngrad)n=—gradp—4~;[=@rot5)]; ! (73)
b) The equation of continuity: \
. Yy
divlen) =0 (74
¢) The law of the conservation of energy can be written
1 1
(v grad ¢) = > (v grad p), l (75)
if we designate enthalpy per unit mass as 1 = e + p/p.
d) For the magnetic field we alsc add sourcelessness
divd =0 il (76)
e) and the induction law, which under conditions in the
introduction section has the form
rot 0] = . | (77)

Liist derives the appropriate laws of conservation from these
basic equations. We find that we obtain the same form as in

normal hydrodynamics if, in place of pressure p, we introduce
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a pressure tensor

o= (p+ ¢ 9°) b= g5 ol | (78)

add a magnetic term to internal energy e per unit mass

i

1
€*=e+§i§$2: (79)
and also write enthalpy 1 as a tensor
it L+_l_@ﬂ.a.~._1_ﬂ}ﬂp (80)
L 4o ¥ Amp

3. Front Conditions

~
=
|_D
=

From the laws of conservation, Lust calculates front condi-
32 Hx’ Hy (x is the direction
of propagation of the front; y 1s the direction of the projection

tions for the quantities p, i, Ves V

of the lines of force on the plane of the front). ‘Due to the
complexity of the equations, we must refer the reader to the
original article. In the case of oblique lines of force, they
exhibit a break as they pass through the front, and we thus now
have (in contrast to the front without aifield) an additional
tangential acceleration of the gas as the front passes through it;

An additional, more important complication is that the front
conditilons are no longer single-valued. For example, the equation
for the jump in density 1s third-order. It can have three real
solutlons, at least one of:which we ignore, though, due to: the
required entropy increase in the front. The remaining ambiguity
then means that for a specified region ahead of the front and a

—

specified front velocity, conditions behind the front are not
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established uniquely; rather, two different types of shock wave
fronts are possible under some circumstances. Because of thils fact,
List first performs an analysis for the limiting case of vanishing
shock strength (M = 1), i.e. for sonic waves.

4. Sonic Velocity in the Plasma

Due to the transverse rigidity of the magnetle field, there
are three different types of sonic waves in the plasma with
{generally) different sonic veloclties. We show a polar diagram
in Fig. 13. If we set up a perturbation at the origin at time
t = 0, the three sonic waves produced lie on the plotted curves
at time t = 1. The waves whose velocities are designated c4 and c_
osclllate 1n the x,y-plane (defined as above) obllquely relative
to the directlion of propagation, i.e. are mixed longitudinal and
transverse waves. The wave designated cp undergoes pure transverse
oscillation in the z-direction and is called an Alfvén wave.

Let B be the ratio of hydrodynamic internal energy e to total /415
energy e¥, as given in (79), ¢ be the angle between the lines of
force and the direction of propagation, and let n = cosge,

b=
—= (1 -+ ?__1 {1_2)71 (81)
Snm p
7 = €OS @

Fig. 14 then shows the three sonic velocities as'functions of B and
n. We see, for example, that only for relatively weak magnetic
flelds do cp and c¢_ differ by as little as they are shown to
differ in Fig. 13. |

We show all of the possible 1limlting cases 1in Table 5. The.
last line, for example, tells us the following: the c_. wave is
generally mixed (directlon of oscillation oblique to direction of
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Fig. 13.

total energy).

Polar diagram of
sonle veloeitiles c., ca and
c+ for a plasma in a mag-
netic field (B = 0.75, i.e.
magnetic energy is 1/4 of

(81)

From [35].

r—

; Strong

a2

Fig. 14.
veloeitles as functions of
the strength and direction
of the magnetic fileld; see
From [35].

Magnetic field

I I i
2% 06 Gif— 10

—

Weak

The three sonic

TABLE 5. LIMITING CASES FOR THE THREE TYPES QOF SONIC WAVES
) Field rel. t%,direction of propaga-
Wave  type| In.gen— ion
| eral I | L I P L
o, n esth | gl ca(t) eg (1)
CA t ca (1) 0 ca(t) 0
¢ A c4(t) ) 0 cg(l} 0
Weak: field-

[
Taro
"

(¢TI
0g ho=ho
i
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HE/MFD, Alfvén wave,

Hy/uwp, limiting case for ¢y wave,

? = longitudinal,
t = transverse,
m = mixed.

Stong field

5p/3psrordinary sonic wave without field,
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propagation); in a parallel weak field, its veloeity 1is equal to
that of the Alfvén wave, and the dilrection of osclllation is
purely transverse. In.a parallel strong field, its velocity is
equal to soniec velocity wilthout the fleld, and the direction of
oscillation 1s purely Zongitudinal. The velocity of the c_ wave

becomes zero 1n a perpendicular fileld in each case, and

cp << cg in a weak filelgd, (82)
cp 3% cg for a strong field.

5. Discussion

The presence of the three different types of sonic waves in
a plasma can be considered certain. It 1s not clear, on the
other hand, whether the corresponding three different types of
shock fronts can actually be realized physically. In Fig. 15 we
show the density jump in the front as a function of front velocity
V for a relatively strong magnetic field. Accordingly, a front
(corresponding to the c. sonic wave), which we have labeled F_,
exists at V > ¢_; the jump in density initially increases. The
other two solutions begin below p2/01 = 1; they would thus be
connected with an entropy decrease and are thus physically im-
possible. Only beyond V = cp can we add front Fp (corresponding
to the Al1fvén wave). As V increases, the density jump in Fp
increases and that in F_ decreases, until both finally coincide
at V = Vg. No-shock wave front exists at all from there to V = cy4;
front F4 only occurs beyond V = cy. From there on the density
jump increases monotonicallf and approaches the limiting value
92/91 = 4 asymptotically (Jjust as for a strong front without a

field).
It appears somewhat incredible that an interval Vg <V <c,

should exist in which no shock wave fronts are possible, while

shock wave fronts still exist at lower velocities (in the
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interval c_ < V < Vg). What

happens, for example, to an

—_—

j

Liaw éﬁﬂ;#ﬂ’#,,ﬁy~f—“ F_ front continually accelerated
0 P Lo -w}Ei+— ‘ from behind as it passes Vg?

: GV Cz It is generally characteristic
Fig. 15. Density jump in the of a shock wave front that it
ﬁg;gﬁii; e is faster than the perturbation
n? = 0.5; see (81). From [35]. waves emanating from it, i.e.

it moves into an undisturbed
region to the front of it. A study should therefore be made as
to whether the F_ and FA fronts are perhaps physically impossible
because ¢, waves might be excited by them which move mnore rapidly
than the front itself. That would then mean that shock wave
fronts can only form via the highest of the three scnic velocities,

C, . Clarification of these questions would be very desirable.
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V. "The Interaction of Nonsteady Fronts

The problem of the interaction of shock wave fronts plays
a critical role in the working program which we set up at the
beginning (turbulence with supersonic velocities). The actual
objective here would be to obtain the simplest possible general
information regarding the interaction of shock wave fronts of
any strength and direction, also taking energy radiation (and
possibly magnetic fields) into consideration. The article by
K. Hain [37] can be considered a first step in this direction;
he calculated a number of examples numerically which involve
two planar, parallel, nonsteady fronts which collide or over-
take one another, without energy radiation loss and without
magnetic fields. The overtaken front or, in the case of col-
lision, both fronts are assumed to be strong and of the type
assoclated with the standard scilution; the undisturbed region
ahead 1s quiescent and of constant density and negligible tem-

rerature.

Since the complexity and extent of computations almost
exceeded the capacity of the one G 1 computer available at
that time, only a relatively small number of examples -- six --
could be computed. It was therefore also not yet possibie to
get much farther than theorems and supposition3~with respect to-
the requirement for a general and simple description. The
results are represented in the original article in the form of
numerous filgures which indicate the spatial and temporal behavior
of the varilables of state. We can only present a brief summary
here.

As in [6], calculatlons were again made using the method
of characteristics, with differential satisfaction of the front
conditions for any front strength; the front conditions were
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solved by 1lteration. The state variables at the space-time point
of collision {(or overtaking) are obtained from the equations of

Courant-Friedrichs [14] applicable to steady shock wawves.

2. Collision

In Fig. l6a we show the space-time point of collision and
its vicinity. vt and V™ are the velocities of the two incoming
fronts. Two outgoing fronts are formed, plus a discontinuity
surface‘at which density and temperature change discontinuously

while pressure and veloclty remain continuous.

Fig. 16. Interaction between two shock
wave fronts. a) Collisdion, bh) one
overtaking the other.

— Shock wave front, denser side.

hatched;

————— Discontinuity surface.
Centered rarefaction wave shown as a
pencll of lines. From [371].

In order to char-

acterize the strength
ratic of the lncoming
fronts, we define

F=- P4HV- = —utfu- }(83)

The discontinuity
surface vanishes for
fronts of equal
strength (F =.1). .
The two outgoing
fronts can no longer
be approximated as
strong fronts, since
the density Jump is
now only by a factor

of 2.5, as compared to a factor of U for a strong front. Thus

derisity increases by a total factor of Py”
the undisturbed region ahead. Pressure increases by a factor of

= 10 relative to

6 and temperature by a factor of 2.4 at the outgoing front.
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If the shock wave fronts are very unequal, on the other hand,
e.g. F >> 1 (but both Mach numbers large relative to 1), the
stronger of thé two fronts continues almost unchanged as a strong
front, whereas the Weakér 0of the two proceeds with a density
Jump of p;/p+ = 1.5 after collision. Maximum density increase is
now p;/p = 16 for F »>> 1. The timewise development of front
values can be described as follows. Density decreases rapidly
in all cases, since each front i1s passing into the region of .
decreasing density behind the other. The situation is different
in the case of front velocity: were the front to pass into a
gquiescent, constant region, front velocity would drop:off. This
is opposed by the facts, first, that the density of the region 'Zﬂlg
ahead of the front decreases and, secondly, that gas velocity
in the regilon increases in the direction of front veloecity. The
behavior shown in Fig. 17 results: only in the case of a very
unequal strength distribution does the veloclty of the stronger
front (F = 4) decrease with time, whereas for F < 1, the effect
of the region ahead predominates, and a pronouncéd increase in
front velocity with time results. Temperature at the front
decreases monotonically for F = 2 and F = U4, while for F < 1
1t initially rises somewhat and only then falls off.

25— Y
7
2¢
L1 '
|1 s o 4}./
I'.'_j- (3 2
y 47 ceedec
L : e B
| AR A0 R B N
: gl -
Vo | 'j::::ET—’
! ! e
\ i , . - -
i aa "-agf -8 -02 ¢ 82 ¢ aé 44

' ar 42 a3 as as

% F—

Fig. 17. Front velocity Vg as  Fig. 18. Front strength M,, as

a function of time after col- defined by (84), after collision
lision. F from (83). Normali- as a function of homology variable
gation: ut = 1 for F > 1, and ‘g for the region ahead of the
u- = 1 for F < 1. From [37]. front. Timewlse development pro-
Eee%s from right to left. From
371,
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Hain proposes that. the timewise development of the front
@aldéé not be plotted over time itself but over the homology
variable & defined by (25) for the region ahead. (The homologous
standard solutlion was assumed for this reglon ahead, i.e.. the
region behind the opposing front.) When this type of plot is
made, 1t appears as if fronts of all strengths would, after
initial differences, ultimately approach the same timewlse

behavior.

As an example, we show the timewise behavior of the quantity

Mo=Va_u—_i[ (84)

)

in Fig. 18 as a function of g; MO represents a measure of the
strength of the outgoing front. MO + 1 in the limiting case of
the weak front; M -+ 4/Y5 = 1.79 in the limiting case of the
strong front. (The gquantity MO was erroneously designated as

Mach number in {37].) It appears as if all fronts would stop

at about the same £ value (M0 = 1), at approximately & = -0.7.

A further study of this problem would be of interest, particularly
for the collision statistics whieh are to be applied.

The spatial distribution of the variables of state in the
region behind the front 1s shown by Hain in a large number of
figures. While velocity deviates only slightly from linearity,
the other quantities differ greatly from the standard distribu-
tion, since no free flowoff can occur to the rear, and since
the region ahead is not constant. Temperature decreases con-

tilnuously to the rear, density generally increases.

Figure 16b shows the space-time point of overtaking and

its viecinity. A forward-moving shock wave front, a discontinuity
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surface and a rearward-moving centered rarefaction wave are
generated according to [14]. If the density jump is p*/p > 1.6,
the resuitant front is faster than the original front.

The standard solution was always employed in numerical com~
putation for the overtaken front (V™) and the reglon behind 1t.
The overtaking front (V¥) was likewise used in the form of the
standard solution at the beginning of calculation, but subsequent
calculation was done with the method of characteristics in the
nonsteady mode. The overtaking front decays so rapidly with
time that 1t could not be followed beyond the time of over-

taking in two computed examples.

It is worth noting that here, too, linear velocity distribu-
tions are again set up in all cases, both behind the overtaking
front (Vt) and behind the generated front (V). The tendency /420
toward linear flowoff thus appears to be very general and dominant.

The results of the calculations can be represented as follows:
If the overtaking front is weak, the overtaken front is modified
to only a very slight degree. If the overtaking front 1is strong,
the standard solution is likewlse established again behind the
generated front after a certain perilod.

4, Summary

1. When one front overtakes the other, the standérd solution

is always established a certalin length of time after interaction.

2. After ccllision, the subsequent behavior of the fronts
appears essentially to be determined only by the homology solu-
tions into which they pass. All fronts appear to have decayed
to Mo = 1 at about £ = -0.7, but this still remains tc be con-

firmed by additional calculatiocns.
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3. All veloeity distributions generated are approximately

linear.

Addendum: A restriction is necessary regarding item 2. If
we define the width w of a front at the instant of collision to
by

W=|X — o] and ela, ) = (112) (X, o),

then the width ratio has always been taken as W'=_w+/w' =1 in
the examples calculated by Hain. For a complete description,
however, not only front strength ratio F but also width ratic

W would actually have had to vary. In going to a limiting case,
e.g. W=+ 0, we see that statement 2 (all fronts have decayed to

M, = 1 at the same g£) can then.no longer hold.
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VI. B8tatistical Model of a Field of Shock Wave Fronts

1. Introduction

The goal of our working program was first to study the
individual problems of shock wave fronts and their interaction
and to answer them with the most general and simplest possible
statements. These results were then to help in describing,
completely and statistically, a field of shock wave fronts
passing through one another. In particular, processes involved
in the establishment of equilibria or steady states were to be
studied, and we can seek an ultimate state of equilibrium
established with a suitable input of energy. This statlstical
description of an equilibrium approached asymptotically should

then serve as a basis for a theory of supersonic turbulence.

In the preceding sections we reported on the studies con-
cerning the individual problems. If we consider the selection
of problems studied and the scope of the results obtained, it
might seem premature to begin now with a statistical deseription.
In particular, we are still missing a study of the interaction
of fronts intersecting obliquely and of the effect of energy
radiation - (and possibly of magnetic flelds) upon interaction. ‘iﬂg&
Sufficient material is not yet available in Chapters III (radia-
tion loss) and V. (interaction), and that which 1is avallable has
not yet been worked through sufficiently to allow adequate repre-
sentation in simple and general statements. Moreover, only
infinitely extended fronts have been studied so far, whereas we
require the timewlse development and the interaction of spatially
restricted fronts for the statistics of a shock wave front field.

If we nevertheless make an attempt now at a statistical
description of shock wave front fields, we do so for two reascns.
First, the general behavior of a shock wave front field can
already be studied qualitatively with a very crude model. We

can use it to see, say, how an equilibrium state might loock, and
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when and how it would be established. In addition, we obtain a
feeling for the 1initial data on which it essentially depends.

The second reason is of a technical nature: even the execution

of a very crude model practically exceeded the capaclty of the
GBttingen G 2 computér, and the execution of a considerably
improved model would be quite hopeless at this time. In the
following we describe work by Irene Crone [38] on a very simplified
statistical model.

2.  The Model

, In order to limit computational outlay, which increases
sharply with the number of dimensions, the velocity and size of
the fronts were considered in only one dimension, the position
of one front in two dimensions. All fronts lie parallel to the
y,Zz=-plane and move in the x direction. They are of infinite
size in the y- and z-directions. We do not consider the processes
occurring in a volume, but only the lines of intersectlon of
the fronts with the x,y-plane, so the silze of the fronts in the
z-direction does not play a role. We consider only a fixed
rectangle; fronts which leave this region at one boundary are
reintroduced at the opposite boundary at a random location with
fthe same variables of state.

Each front 1s characterized by two quantities: velocity (in
the x-direction) and length {(in the y-direction). Velocity
decreases with time, as t‘o-% as an approximation to the standard
front. This means that we assume a spatially and temporally
constant average for all varilables of state for the region ahead
of each front. New fronts, discontinuilty surfaces and expansion
waves are generated by interaction (in accordance with the
formulae from [14]);:al1l possible interactions among these three
types of objects are taken into consideration. In the examples
calculated, the total number N of all objects lay within the
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interval 50 < N < 1000. . As an example, we show the collision
of two fronts with partial overlap in Fig. 19.

| )wim,,,;m ‘\

Fig. 19. Model collision between two fronts. A) Before,
b) after. Four smaller fronts and a discontinuity surface
are produced. From [38].

Small fronts are always produced from large fronts. This
process has a lower limit in nature, since very small fronts
disintegrate rapidly ("break up" from the edge inward); this
is taken 1nto consideration in the model, as a rough approxi-
mation, by the introduction of a "minimum length." All fronts /422
which are produced below this length are simply deleted. Like-
wise, all fronts are deleted which have dropped to Mach numbers
less than 1.5 in the course of time.

The energy input necessary for a steady state is provided
by the fact that a certaln number of large and fast fronts are
reintroduced per unit time at the boundaries of the region,
with Mach numbers up to M = 25,

The model includes a number of parameters which can be
selected freely, e.g. the frequency of energy input, the
frequency distributions of the lengths and velocities intro-
duced, the ratio of the largest to smallest length, etc. The
most 1mportant of the free parameters, however, is provided by
the ratio of mean collision time to the time scale of the
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veloclty drop of the fronts. This parameter is defined by

__V(to‘f“'fu}_ E—O’*
“T TV ’“(“rtu) 1} (85)

ih.I. Crone's work. Here V(t) is front velocity, decreasing
with time as £=0.4, t, is the "age" at which all fronts in the
energy input are réintroduced; and 1, is mean collision time

(at the Beginning of a computational example). The significance
of a will be illustrated with the extreme cases. If a« » 0,

then practically no collisions occur; the fronts fed in simply
die out by "agingt" If « » 1, then practically no "aging" occurs;
the introduced fronts chop one another down to minimum length

in a short time. After several preliminary trials, o = 0.6

was selected; reasonable précesses of steady state development
were obtained in the vicinity of this value.

3. Execution

The problem was solved by Monte Carlo methods, since the
differential equations both for fhe process of establishing
a steady state and for the steady state are hopelessly complex.
The necessary random data were confinually_generated during
computation by a method proposed by the author in [39].

Some pairs.of fronts available in a "list" are selected by
random declsion. A probabllify P is caleulated for the inter- “éﬂgi
action of two such fronts from the two velocities and lengths.
A random number (equally distributed within a certain interval)
is now generated. If probability P lies above this random number,
interaction oceurs; if it lies below, twe other fronts are selected.
When interaction cccurs, the two old fronts are deleted from the
list; the products of Interaction are calculated and entered in
the 1list. In addition, a new front is added at statistically'

distributed time intervals (energy input}, the variables of state
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for which are random values from predetermined distributions of

length and veloecity. . All of these processes were taken care of

by a fully automatic program on the @ 2.

4,  Results

In the following figures we present a number of the results

from four examples which were executed.

If we designate the

number of shock wave fronts added per unit time as Z, then

Z A

p*2gilpily
and the values of o are

% T % T %

Velocities are equally distributed over an interval 0.75 V

£V S Vmax

= 1:2,1:2,1:4 2,

= 0.60 and op = 0.75.

tion of new fronts, and likewise for the lengths.
25 at Vma

number is M

X

here, and r

8 1000 2 ¢ 6 &
-

Fig. 20.

field of shock wave fronts.

time t.

max/

r_.
min

10

-

<
max -

at the beginning of computation and in the introduc-

The Mach

i

i 8 g 2

*

— -

& 8

Process of steady state establishment in a
a).,Total energy irv2 over
b) Mean square velocity over time t.

From [38].

In all four examples, all mean values and likewise all

dlstributions approach an equilibrium state after a certain

length of time.

In Fig. 20a we see the timewise development of

"total energy" irvV? contained in the region under consideration
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(r = length, V = veloclity, summed over all fronts, discontinuity
surfaces and rarefaction waves). Figure<20b_shows the development
of mean square vélocityivg. A striking feature 1s that the mean
velocity which is established hardly depends upon the parameters,
and is about equal to half the velocity of the fronts added. On
the other hand, total energy (for a given o) decreases approxi-
mately with /f, since proncunced dissipation results from the
"chopping up" effect accompanying a high input level.

Figure 21 shows the dis-
tribution of length r

which is established in
example C. Practically

men

the same distribution is
also eventually established
in the other examples.

The distribution increases

sharply toward the smallest

fronts; we see from this

Fig. 21. The distribution N(r) of that cutting off at a
front lengths r which is established
in example C. The result is about

fhe same in the other examples, too. a somewhat forced simpli-
From [38].

"minimum length" represents
fication of our model.

It was found that this model is thoroughly suitable for
studying processes in the assumption of a steady state in a
field of shock wave fronts and that it is reasonable to seek
an equllibrium state and to try to deseribe its characteristics
statistically. Moreover, the usability and superiority of the
Monte Carlo method used is confirmed for the problem at hand.

In closing, we would again like to express the hope that
the problem treated here will be attacked again in another study
~group. To this end, the Interaction of oblique fronts with
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energy radiation should probably first be studied, perhaps making

use of the limiting case of the isothermal front. An additional /425
point yet.to be clarified is the timewise development of fronts

of finite extent. A three-dimensional model improved in this

respect should then be capable of providing quantitative 1infor-
mation for the theory of supersonic turbulence being sought.

To be sure, it could only be executed on an extremely fast and

large computer.

I would like to cordially thank Prof. von Weilzsacker and
all members of our study group for many discussions and for a
number of unpublished works which were obligingly made available

to me.
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